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Abstract to this 14-dimensional space and the most significant
components are used to form the feature space for the

Texture analysis is performed on multibeam sonar classifier. A simple clustering algorithm is used to clas-
imagery. A set of fourteen texture features is com- sify the seafloor area surveyed into "similar" regions.
puted using co-occurrence matrices to form the fea-
ture space. The dimensionality of the feature space
is reduced by extracting the principal components 2 Image Construction From Sonar
from the original feature space. Classification of
the image is performed on the principal compo-
nents using K-Means algorithm. Results indicate The requisite data for texture analysis are pro-

that seafloor bottom types can be characterized by vided by a multibeam sonar system. Sonar energy
analyzing the texture of the bathymetric sonar im- frmtestmpojcrarylctdonhehi'nalnge hull impinges on the bottom of the ocean as a narrow
ages. beam The echo is received by an array of hydrophones

mounted athwartships (perpendicular to the projec-
1 Introduction tor). Beamforming is performed by computing a 256

point Fast Fourier Transform (FFT) on the raw data
collected. This yields an array of return intensities-an

Multibeam echo sounders have recently been used intensity for each beamformer bin and sample time.
to map seafloor with high resolution. However, The sampling rate is such that approximately 1000
bathymetry does not yield other seafloor character- samples are obtained for each bin. This is the data on
istics such as bottom type and seafloor roughness. which texture analysis is performed.
These characteristics can be inferred from the fluc-
tuations in the backscattered acoustic signal [3]. Tex-
ture is a property that provides information about the
roughness of an object. In this paper, we attempt to 3 Texture Analysis
use texture analysis to extract information about the
roughness of the seafloor, and classify areas with sim- Even though a precise definition of texture does
ilar features together. not exist, image texture can be qualitatively described

A large swath of seafloor can be mapped by an- as having one or more properties of fineness, coarse-
alyzing the backscattered data from each ping, i.e., ness, smoothness, granulation, randomness, lineation,
transmission cycle. The data from each ping are di- or being mottled, irregular, or hummocky [13]. Basi-
vided into 256 parts corresponding to 256 directions. cally, texture refers to repetition of basic texture el-
The data in each of the directions form a bin. A ements called texels. A texel contains several pixels
powerful tool to extract texture information, the co- whose placement could be periodic, quasi-periodic or
occurrence matrix, is employed on the sonar image. A random. The two dimensions of texture are the de-
co-occurrence matrix is formed for the data in each scription of these texels, and the spatial distribution
of the bins in a ping. A set of 14 texture features is of these primitives. A texel is a set of pLxels with some
then computed from the co-occurrence matrix. The common tonal feature or local properties.
results of the texture feature extraction are combined There is a close relationship between tone and tex-
to form a single 14-dimensional texture feature image ture. Consider a small area of an image. As the num-
data set. A principal components transform is applied ber of distinguishable tonal properties decreases, the



tonal properties will predominate. When the small- matrix is also computed in a "census" fashion by
area patch is the size of one pixel so that there is counting pairs of occurrences of pixel values given a
only one discrete feature, the only property present is certain spatial relationship for the pair. The normal-
simple gray tone. As the number of distinguishable ized co-occurrence matrix elements are computed as
tonal properties increases, the texture property will N(zi, x2)I - C21 = D(d, 0) (2)
predominate. When the spatial pattern of the tonal P(i, j, d, 0) N Nh-
primitives is random and the gray tone varies widely
between primitives, a fine texture results. As the spa- for pairs of pixels at locations z, and *2 having inten-
tial pattern becomes more definite and and the tonal sity values i and j, respectively. The distance measure
regions increase in size, a coarser texture results. Thus D(d, 9) states that the spatial relationship of the pair
we see that, to characterize texture, equal considera- of pixels is that they are located at a distance magni-
tion must be given to both the tonal primitives and tude d apart and at an angle 0 (or 6 + x) from each
the spatial dependence between the primitives, other.

A number of approaches to analyzing texture have A complete set of co-occurrence matrices would
been presented in the literature. A comprehensive cover all values of d and 0 over a meaningful range.
survey of the basic approaches is presented by Haral- The values of 0 would vary between 0 and 7r using
ick [13]. Some of the methods of texture analysis are some number of discrete steps. The value for d would
co-occurrence matrices [14], gray level run lengths [9], range from 1 up to some distance where the correlation
Markov models [5], [11], structural analysis [13], and between pixels is still significant.
fractal analysis [1]. In practice, several co-occurrence matrices are com-

Conners and Harlow [17] present a theoretical com- puted for several integral values of d and for four values
parison of the Co-occurrence Method (their term is of 0, 0, 7r/4, 7r/2, and 3r/4. Figure 4 shows several
Spatial Gray Level Dependence Method), the Gray computed co-occurrence matrices for a simple example
Level Run Length Method, the Gray Level Difference 2 bit/pixel image.
Method, and the Power Spectral Method, and con- One of the disadvantages of the co-occurrence ma-
clude that the Co-occurrence Method is the most pow- trix method is the potentially large amount of data
erful algorithm for texture analysis. Hence our choice computed for different pairs of d and 0. Only four
of co-occurrence matrices for the analysis of texture. of the many possible co-occurrence matrices are com-

Mastin et al. used co-occurrence methods on SAR puted in Figure 4. However, co-occurrence statistics
imagery of coastal waters for obtaining offshore wind are powerful in that they are invariant under mono-
direction and for the estimation of aerodynamic rough- tonic intensity transformations [15].
ness parameters [4]. Aloimonos addressed the problem
of determining shape from texture [7]. Haralick et al. 3.2 Texture Analysis of Multibeam Sonar
tried to use textural features of photomicrographs of Data
sandstones to identify the type of rocks and applied
textural analysis to satellite imagery [14]. A co-occurrence matrix with d = 1 and 0 = 0 is

formed for the array of data in each bin. We keep 0
3.1 Co-occurrence Matrices = 0 since the pings are not georefernced and the pro-

cess of georeferencing will suppress many texture at-
As remarked earlier, knowledge of the second or- tributes. In other words, it is assumed that the data

der statistics of the image is required to adequately from two adjacent pings are independent. The dis-
describe texture. A histogram is an estimate of the tance d is kept small because we expect the primitives
first order statistics of an image (or of a region). The to be relatively small. Haralick et al. [14] present a set
normalized histogram is computed as of 14 texture features that can be computed from co-

occurrence matrices. The meanings of some of the fea-
P(i) = ,i = 0, 1_ .,2 b -_ 1 (1) ttres are also presented. Some of the important tex-

N ture features computed are angular second moment,

where N(i) is the number of pixels in the image (re- contrast, correlation, inverse difference moment, and
gion) with intensity value i, N is the total number of entropy.
pixels in the image (region), and b is the number of We compute the 14 features from the co-occurrence
bits per pixel in the image. matrix formed for each ping along all 256 bins. The

The analog of the histogram for second order statis- corresponding features for all pings are concatenated
tics is the co-occurrence matrix. The co-occurrence to form a 14-dimensional texture feature data set. A



detailed description of texture feature extraction is 5 Classification
provided in [6].

Classification, the goal of pattern recognition, is the
process of assigning each of the objects of interest to

4 Data Reduction one of a number of categories or classes. The objects
of interest are called patterns. Each of these patterns

The magnitude of data generated by texture anal- is represented by a vector of dimension, say, n, where n
ysis is inappropriate for classification purposes. We is the number of features used to represent the pattern.
have to reduce the data and, at the same time, retain As an example, consider the problem of recognizing a
the most useful part of the data. There are several digit from 0 to 9. Suppose that each of the digits is
methods of reducing data. A very common approach contained in a grid divided into n small squares as in
employed is the extraction of principal components Figure 1. Then one way to form a feature vector is to
from the original data. measure the area occupied by the digit in each-of the

The principal components transform (also known small squares.
as the discrete Karhunen-Loive transform or the
Hotelling transform), is used to transform the 14-
dimensional data set into another feature space of the
same dimension. In our case, each pixel in the tex-
ture image is represented by a 14-dimensional vector, '
say x. We have a total of 283 x 197 (=55751) such
vectors. The mean vector and covariance matrix of _ [
the vectors are easily estimated. The principal com-
ponents transform is computed using the equation

y = A(x - mx) (3) Figure 1: The digit "1" in a grid of 25 squares

where A is the matrix formed from a sorted set of Thus, X = [XIz 2 ... zn]T is a vector representing a
eigenvectors of the covariance matrix Cx and mx is digit, where z 1 , z 2, .. .,zx are the areas occupied by
the mean vector. By discarding those eigenvectors the digit in the little squares 1, 2,. ... , n respectively.
for which the corresponding eigenvalues are relatively The problem of pattern recognition is, therefore, to as-
small, the size of the matrix A can be suitably re- sign a class label to an unknown pattern, or a random
duced to make y a vector of desired dimension. It can vector in the feature space. A function which sepa-
be shown that the new feature space is one in which rates any two classes is called a discriminant function
the data from different features are uncorrelated and and a network which classifies a pattern based on the
the particular choice of eigenvectors retains the max- values of the discrimant functions is called the classi-
imum possible information [121. fier [8].

We retain the first four components of the trans- The probability of misclassification is the key fac-
formed data and make it the feature space for the tor in analyzing the performance of any classifier. It
classifier. The four principal component images are is well known that the optimal classifier, assuming the
shown in Figure 5. The sorted eigenvalues of the distributions of the random vectors are known, is the
covariance matrix are 8805.451, 2.207, 1.376, 0.8799, Bayes classifier which is studied under statistical hy-
0.1558, 0.04136, 0,02413, 1.124 x 10-3, 7.709 x 10-4, pothesis testing [8]. However, the implementation of
3.251 x 10-4, 3.109 x 10-4, 2.338 x 10-4, 3.19 x 10-', the Bayes classifier is difficult because of its complex-
and 1.748 x 10'. The first four principal components ity, especially when the dimensionality is high.
are chosen because they represent the entire feature If there exists a set of patterns, the class assignment
space with a mean square error of 0.224104. This is of which is already known, the process of classification
computed using the relationship is called supervised classification. A portion of the

K set of labeled patterns, called the training set, is used
ems E Aj - E Aj (4) to derive a classification algorithm. The rest of the

j=1 j=1 labeled patterns comprise the test set and are used
to test the classification algorithm and evaluate its

where, in our case, n = 14, K = 4, and Aj's are the performance. Once the algorithm is tuned to provide
eigenvalues. the desirable performance, it can be used on initially



X2 I rithm on the samples in the multidimensional tex-

-unctio boundary ture feature image. Most of the clustering algorithms

DIscriminant -------- which seek to optimize a clustering criterion are itera-

-- * \ tive. These algorithms are not guaranteed to converge
* • • and even if they do converge, they may converge to a

S0 0 1* local minimum rather than the global minimum. A

-0 branch and bound procedure which is guaranteed to
find the global minimum is given in [18]. This algo-

•0 rithm, however, is not practicable for the magnitude
.. s sof data in our case. A simple clustering algorithm [2]

" 00000000 which optimizes a criterion iteratively, is given below.
0 0This is followed by a very popular algorithm called

0 0 the K-Means Algorithm [2] which optimizes a specific
criterion.

5.2 A Simple Clustering Algorithm

Figure 2: A clustering example X1 Suppose the number of clusters N, is known. Let

X denote the set of samples {x(')} to be classified

unlabeled patterns [2]. and fl an ordered set of class labels assigned to the

Sometimes, however, we may not have a set of Ia- samples. Further suppose that w13, w....,wN, are the

beled patterns and we may not even know the num- labels and (() is the set of class labels at the rth

ber of classes. The -problem is not only to classify iteration. Assume that the classification is optimal

the data, but also to define the classes. Several ap- when a criterion function J(X, fl) is minimized. The

proaches to this problem have been dealt with in the following general procedure can be used in an attempt

literature [16], [10], [19]. The ensuing discussion is to minimize J.

solely concerned with a procedure of seeking clusters 1. Choose an initial classification WV and compute J.

of points in the measurement space called clustering. 2. Change the classification in a way that tends to
decrease J.

5.1 Clustering 3. If it is not possible to decrease J in step 2, then
stop; else go to step 2.

Clustering is the process by which samples with Since the variables in this optimization problem are

"similar" features are combined together to form a the class labels which are discrete, gradient search

single cluster. The fundamental issue in the cluster- techniques cannot be used. One way to solve this

ing problem is the definition of a cluster or, equiv- problem is to determine the change in the class label

alently, the choice of features. There are two ap- for each sample that would result in the greatest de-

proaches to clustering, the parametric approach and crease in J and apply these changes in step 2. Suppose

the nonparametric approach. Parametric approaches that 11(r) = {w.,,w,,.. .,w,,} where N is the number

require either clustering criteria to be defined or as- of samples in X. If AJi is the largest negative change
sume a mathematical form for the distribution of the in J that can be made by reclassifying sample x('), and
samples. Most often, a clustering criterion is defined w,, is the corresponding new label for x(), then the

and samples are assigned to classes such that this cri- new set of labels is f1 (r+i) = {w,.,w, 2 ,..

terion is optimized. A typical example of assuming Observe that since AJi is evaluated by making one

a mathematical form for the distribution is the prob- change at a time and fl(r+i) is obtained by making all
lem of finding parameters that best fit the data, the changes simultaneously , the change in the value of J

distribution of which is assumed to be a summation nN
of normal distributions. On the other hand, nopara- to AJi. It is highly likely,

metric approaches separate samples according to the though, that the criterion function has decreased.
valley of the density function [8]. Figure 2 shows a set

of two-dimensional patterns grouped into two clusters 5.3 The K-Means Algorithm
using a distance function as the criterion.

In the absence of ground-truth information, i.e., a This algorithm uses a similarity measure that is the
training set, we are led to employ a clustering algo- Euclidean distance of the samples and a criterion J



defined by

Ix(') - ok1' (5) :
k=1 X(*)..:i"

where the second sum is over all samples in the kth
cluster and A~ is the "center" of the cluster. It is
easily seen that for a fixed set of samples and class
assignments, J is minimized by choosing po to be the
sample mean of the kth cluster. Moreover, when pIk
is the sample mean, J is minimized by assigning x(')
to the class of the cluster with the nearest mean. A
number of other criteria are given in [8].

The complete algorithm is outlined below.
1. Make an arbitrary assignment of samples to clus- ! •
ters.
2. Compute the sample mean of each cluster.
3. Reassign each sample to the cluster with the near-
est mean.
4. If there is no change in classification, then stop;
else go to step 2.

6 Results Figure 3: The texture image after clustering
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